The technologies are emerging, but what’s needed is a program to pull them together.
Within the next few years,we will begin work on the sixth generation [fighter] capabilities necessary for future air dominance.The Air Force may have to move a little faster to develop that next generation fighter.
The possibilities for a sixth generation fighter seem almost the stuff of science fiction.
It would likely be far stealthier than even the fifth generation aircraft. It may be able to change its shape in flight, “morphing” to optimize for either speed or persistence, and its engines will likely be retunable in-flight for efficient supersonic cruise or subsonic loitering.
The sixth generation fighter will likely have directed energy weapons—high-powered microwaves and lasers for defense against incoming missiles or as offensive weapons themselves. Munitions would likely be of the “dial an effect” type, able to cause anything from impairment to destruction of an air or ground target.
Embedded sensors and microelectronics will also make possible sensor arrays in “locations that previously weren’t available because of either heat or the curvature of the surface,” providing more powerful and comprehensive views of the battlefield, Meyer noted. Although the aircraft probably won’t be autonomous, he said, it will be able to “learn” and advise the pilot as to what actions to take—specifically, whether a target should be incapacitated temporarily, damaged, or destroyed.
Fighter Generations
The definition of fighter generations has long been subject to debate. However, most agree that the generations break down along these broad lines:
Generation 1: Jet propulsion (F-80, German Me 262).
Generation 2: Swept wings; range-only radar; infrared missiles (F-86, MiG-15).
Generation 3: Supersonic speed; pulse radar; able to shoot at targets beyond visual range (“Century Series” fighters such as F-105; F-4; MiG-17; MiG-21).
Generation 4: Pulse-doppler radar; high maneuverability; look-down, shoot-down missiles (F-15, F-16, Mirage 2000, MiG-29).
Generation 4+: High agility; sensor fusion; reduced signatures (Eurofighter Typhoon, Su-30, advanced versions of F-16 and F/A-18, Rafale).
Generation 4++: Active electronically scanned arrays; continued reduced signatures or some “active” (waveform canceling) stealth; some supercruise (Su-35, F-15SE).
Generation 5: All-aspect stealth with internal weapons, extreme agility, full-sensor fusion, integrated avionics, some or full supercruise (F-22, F-35).
Potential Generation 6: extreme stealth; efficient in all flight regimes (subsonic to multi-Mach); possible “morphing” capability; smart skins; highly networked; extremely sensitive sensors; optionally manned; directed energy weapons.
Technology Readiness Levels
Pentagon leaders now seek to reduce weapon risks and costs by deferring production until technologies are mature. Pentagon technology readiness levels—TRLs—are defined as follows:
TRL 1: Basic principles observed and reported. Earliest transition from basic scientific research to applied research and development. Paper studies of a technology’s basic properties.
TRL 2: Invention begins; practical applications developed. No proof or detailed analysis yet.
TRL 3: Active R&D begins. Analytical and lab studies to validate predictions. Components not yet integrated.
TRL 4: Basic elements are shown to work together in a “breadboard,” or lab setting.
TRL 5: Fidelity of demonstrations rises. Basic pieces are integrated in a somewhat realistic way. Can be tested in a simulated environment.
TRL 6: Representative model or prototype. A major step up in readiness for use. Possible field tests.
TRL 7: Prototype of system in operational environment is demonstrated—test bed aircraft, for example.
TRL 8: Final form of the technology is proved to work. Usually the end of system development. Weapon is tested in its final form.
TRL 9: Field use of the technology in its final form, under realistic conditions.
Within the next few years,we will begin work on the sixth generation [fighter] capabilities necessary for future air dominance.The Air Force may have to move a little faster to develop that next generation fighter.
The possibilities for a sixth generation fighter seem almost the stuff of science fiction.
It would likely be far stealthier than even the fifth generation aircraft. It may be able to change its shape in flight, “morphing” to optimize for either speed or persistence, and its engines will likely be retunable in-flight for efficient supersonic cruise or subsonic loitering.
The sixth generation fighter will likely have directed energy weapons—high-powered microwaves and lasers for defense against incoming missiles or as offensive weapons themselves. Munitions would likely be of the “dial an effect” type, able to cause anything from impairment to destruction of an air or ground target.
Embedded sensors and microelectronics will also make possible sensor arrays in “locations that previously weren’t available because of either heat or the curvature of the surface,” providing more powerful and comprehensive views of the battlefield, Meyer noted. Although the aircraft probably won’t be autonomous, he said, it will be able to “learn” and advise the pilot as to what actions to take—specifically, whether a target should be incapacitated temporarily, damaged, or destroyed.
Fighter Generations
The definition of fighter generations has long been subject to debate. However, most agree that the generations break down along these broad lines:
Generation 1: Jet propulsion (F-80, German Me 262).
Generation 2: Swept wings; range-only radar; infrared missiles (F-86, MiG-15).
Generation 3: Supersonic speed; pulse radar; able to shoot at targets beyond visual range (“Century Series” fighters such as F-105; F-4; MiG-17; MiG-21).
Generation 4: Pulse-doppler radar; high maneuverability; look-down, shoot-down missiles (F-15, F-16, Mirage 2000, MiG-29).
Generation 4+: High agility; sensor fusion; reduced signatures (Eurofighter Typhoon, Su-30, advanced versions of F-16 and F/A-18, Rafale).
Generation 4++: Active electronically scanned arrays; continued reduced signatures or some “active” (waveform canceling) stealth; some supercruise (Su-35, F-15SE).
Generation 5: All-aspect stealth with internal weapons, extreme agility, full-sensor fusion, integrated avionics, some or full supercruise (F-22, F-35).
Potential Generation 6: extreme stealth; efficient in all flight regimes (subsonic to multi-Mach); possible “morphing” capability; smart skins; highly networked; extremely sensitive sensors; optionally manned; directed energy weapons.
Technology Readiness Levels
Pentagon leaders now seek to reduce weapon risks and costs by deferring production until technologies are mature. Pentagon technology readiness levels—TRLs—are defined as follows:
TRL 1: Basic principles observed and reported. Earliest transition from basic scientific research to applied research and development. Paper studies of a technology’s basic properties.
TRL 2: Invention begins; practical applications developed. No proof or detailed analysis yet.
TRL 3: Active R&D begins. Analytical and lab studies to validate predictions. Components not yet integrated.
TRL 4: Basic elements are shown to work together in a “breadboard,” or lab setting.
TRL 5: Fidelity of demonstrations rises. Basic pieces are integrated in a somewhat realistic way. Can be tested in a simulated environment.
TRL 6: Representative model or prototype. A major step up in readiness for use. Possible field tests.
TRL 7: Prototype of system in operational environment is demonstrated—test bed aircraft, for example.
TRL 8: Final form of the technology is proved to work. Usually the end of system development. Weapon is tested in its final form.
TRL 9: Field use of the technology in its final form, under realistic conditions.
No comments:
Post a Comment